Activation of the gab operon in an RpoS-dependent manner by mutations that truncate the inner core of lipopolysaccharide in Escherichia coli.

نویسندگان

  • Moses L Joloba
  • Katy M Clemmer
  • Darren D Sledjeski
  • Philip N Rather
چکیده

The gab operon (gabDTPC) in Escherichia coli functions in the conversion of gamma-aminobutyrate to succinate. One component of gab operon regulation involves the RpoS sigma factor, which mediates activation at high cell density. Transposon mutagenesis was used to identify new genes that regulate gab operon expression in rich media. A Tn5tmp insertion in the hldD (formerly rfaD) gene increased gabT::lacZ expression 12-fold. The hldD gene product, an ADP-L-glycerol-D-mannoheptose-6-epimerase, catalyzes the conversion of ADP-D-glycerol-D-mannoheptose to ADP-L-glycerol-D-mannoheptose, a precursor for the synthesis of inner-core lipopolysaccharide (LPS). Defined mutations in hldE, required for heptose synthesis, and waaF, required for the addition of the second heptose to the inner core, also resulted in high-level gabT::lacZ expression. The hldD, hldE, and waaF mutants exhibited a mucoid colony phenotype due to production of a colanic acid capsule. However, in the hldD::cat background, the high-level expression of gabT::lacZ was independent of the regulatory components for colanic acid synthesis (rcsA, rcsB, and rcsC) and also independent of manC (cpsB), a structural gene for colanic acid synthesis. Activation of gabT::lacZ in the hldD::cat background was dependent on the RpoS sigma factor. The hldD::cat mutation resulted in a sixfold increase in the levels of a translational RpoS-LacZ fusion and had a marginal effect on a transcriptional fusion. This study reveals a stress-induced pathway, mediated by loss of the LPS inner core, that increases RpoS translation and gab operon expression in E. coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of acrA and acrB Genes in Esherichia coli Mutants with or without marR or acrR Mutations

  Objective(s): The major antibiotic efflux pump of Esherichia coli is AcrAB-TolC. The first part of the pump, AcrAB, is encoded by acrAB operon. The expression of this operon can be kept elevated by overexpression of an activator, MarA following inactivation of MarR and AcrR repressors due to mutation in encoding genes, marR and acrR, respectively. The aims of this research were to us...

متن کامل

Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli.

During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand ...

متن کامل

Enhanced expression of the bgl operon of Escherichia coli in the stationary phase.

The bgl operon is silent and uninducible in wild-type strains of Escherichia coli and requires mutational activation for optimal expression. We show that transcription from the wild-type and the activated bgl promoter exhibits a growth phase-dependent enhancement that is highest in the stationary phase. We have assessed the effect of mutations in rpoS, crl, hns, leuO and bglJ, known to regulate...

متن کامل

Study of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants

   Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...

متن کامل

Study of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants

   Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 24  شماره 

صفحات  -

تاریخ انتشار 2004